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TAL effectors are proteins secreted by bacterial pathogens into

plant cells, where they enter the nucleus and activate

expression of individual genes. TAL effectors display a modular

architecture that includes a central DNA-binding region

comprising a tandem array of nearly identical repeats that are

almost all 34 residues long. Residue number 13 in each TAL

repeat (one of two consecutive polymorphic amino acids that

are termed ‘repeat variable diresidues’, or ‘RVDs’) specifies the

identity of a single base; collectively the sequential repeats and

their RVDs dictate the recognition of sequential bases along

one of the two DNA strands. The modular architecture of TAL

effectors has facilitated their extremely rapid development and

application as artificial gene targeting reagents, particularly in

the form of site-specific nucleases. Recent crystallographic

and biochemical analyses of TAL effectors have established

the structural basis of their DNA recognition properties and

provide clear directions for future research.
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Historical background
TAL effectors are trans-kingdom transcription factors

that are secreted by plant pathogenic bacteria in the

genus Xanthomonas [1,2]. Diseases caused by the many

species and pathovars of Xanthomonas collectively affect a

wide variety of plants, including several major crop and

ornamental species [3], and their TAL effectors play

critical roles in determining whether the bacterium is

able to infect its host. The first TAL effector identified

was AvrBs3 from Xanthomonas campestris pv. vesicatoria
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(a pathogen of pepper). AvrBs3 triggers a plant immune

response in strains of pepper that carry the disease resist-

ance gene Bs3. First characterized genetically, AvrBs3

activity was shown to correspond to a DNA fragment on a

self-transmissable plasmid that encoded a 125 kilodalton

protein on one strand and an 82 kilodalton protein on the

opposite strand [4]. A comparison of the two ‘mirror’

reading frames led to the observation that ‘a remarkable

feature of both ORFs is the presence of 17 direct 102 bp

repeats which [within each ORF] share 91% to 100%

homology with each other’ [4]. It was subsequently

demonstrated that the open reading frame on the first

strand was the avrBs3 gene, providing the archetypal

amino acid sequence for this protein class [5].

Subsequent studies revealed members of the avrBs3
family in a variety of Xanthomonas species, including sev-

eral that like avrBs3 act as avirulence factors corresponding

specifically to different host resistance genes [6,7], others

that contribute to the pathogen’s ability to cause disease in

susceptible plants [8], and some that can play either role

depending on whether the plant carries the corresponding

resistance gene [9,10]. Members of this protein family are

also broadly distributed among diverse isolates of the plant

pathogenic bacterium Ralstonia solanacearum, though these

are not yet well characterized [11].

The first clue to the mechanism of TAL effector function

came from the observation that the proteins contain

functional nuclear localization signals (NLS), shown

using a reporter fusion transiently expressed in onion

epidermal cells [12]. Shortly thereafter, localization of

AvrBs3 itself to the nucleus following delivery by the

pathogen during infection was observed and shown to be

required for triggering host immunity [13]. Identification

of a C-terminal acidic activation domain in the members

of the AvrBs3 family, demonstration of the functionality

of this domain in a yeast assay, and discovery of the ability

of the proteins to bind DNA [14–16] provided further

clues regarding the protein domain architecture and

interactions displayed by these genetic factors

(Figure 1) and gave rise to the moniker ‘TAL,’ which

stands for ‘transcription activator-like’ [17].

In 2004, a genetic study indicated that mutations in the

gamma subunit of the general transcription factor IIA

(TFIIA) could confer resistance to Xanthomonad infec-

tions, thereby suggesting a possible point of interaction

between TAL effectors and the plant host transcriptional

machinery [18]. Subsequent studies demonstrated that
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Type III
Secretion Signal

(a)

(b)

N′ –

5′ – T G

NN

-1 0 1 2 3 4 5

05

LTPAQVVAIASHDGGKQALETVQRLLPVLCQAHG
10

Target Site (UPT Box)

15 20 25

S

30 34

6 7 8 9 10 11 121314 15 1617 18 19 20 21 22 2323.5

HD NI NI NI HD NN NG NI NI NI NI N* N*NSNGNG NGHG HD NG HD HDN*

C A T C T C C C C C A A C C
NLS

Repeat Region Activation
Domain

A ACCC GT T T

Current Opinion in Structural Biology

Domain organization and activity of TAL effectors. (a) TAL effectors contain N-terminal signals for bacterial type III secretion, variable numbers of

tandem repeats that specify the target nucleotide sequence, nuclear localization signals, and a C-terminal region that is required for transcriptional

activation. PthXo1 (schematized in this figure) contains 23.5 canonical repeats (color coded to match Figure 2) that contact the DNA target found in the

promoter of the rice Os8N3 gene [20]. Blue bases correspond to positions in the target where the match between protein and DNA differs from the

optimal match specified by the recognition code. The sequence of a representative repeat (#14) is shown; RVD residues (HD) that recognize cytosine

are red. (b) TAL effectors are translocated into the plant nucleus, where they bind to target sites (termed ‘UPregulated by TAL’ or ‘UPT’ boxes, or

‘EBEs’ for ‘Effector Binding Elements’) that are located in the 50 promoter regions of genes that are subsequently activated (Termed ‘S’ for a gene

which confers susceptibility to infection as a result of activation, or ‘R’ for a gene which confers resistance to infection). The C-terminal region of the

TAL effector interacts with plant transcriptional machinery as part of the gene activation mechanism. Plants can acquire resistance traits against

bacterial infection through at least three separate mechanisms: acquisition of mutations in the EBE that reduce DNA binding affinity, acquisition of

mutations in transcription factors that ostensibly inhibit protein–protein association with the TAL effector acidic activation region, or by coupling the

sequence of the EBE box to the promoter region of a resistance gene thereby leading to an avirulence phenotype upon infection.
activation of individual plant genes by TAL effectors is

linked either to resistance [19] or to susceptibility [20–22]

to infection. A pair of reports in 2007 further demon-

strated that the avirulence protein AvrBs3 can elicit either

a resistance phenotype in pepper plants via direct tran-

scriptional activation of the ‘Bs3’ cognate resistance gene

[23�] or a susceptibility phenotype in the same species (in

the absence of Bs3) by activating several genes, including

the cell-size regulator UPA20 [24�]. This analysis resulted

in a description of the ‘upregulated by AvrBs3’ (UPT) box:

a nucleotide sequence that is conserved among the pro-

moter regions of all the AvrBs3 target genes and is

required for activation by AvrBs3. Together, these studies

established unequivocally that TAL effectors are trans-

kingdom transcription factors.

Recognition code and initial structural
analyses
The number of repeats found in TAL effectors varies

from five to over thirty, with an average of roughly 17 [1].

Almost all are 34 amino acids in length, and they vary

primarily in the identity of the residues at position 12 and

13 in each repeat, a pair of residues that were termed the

‘repeat variable diresidue’ or ‘RVD’. The repeat region

always terminates with an apparently truncated repeat,
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containing the first 20 residues (including the RVD),

which is commonly referred to as a ‘half repeat’. Overall,

at least two dozen unique RVDs are observed across the

known TAL effectors, out of which seven sequences are

most common — HD, NG, HG, NN, NS, NI and ‘N*’.

N* corresponds to a 33 residue repeat with a missing

residue within the RVD loop. Two research groups inde-

pendently demonstrated, in papers published back-to-

back in 2009, that the string of RVDs in a TAL effector

defines the length and nucleotide sequence of that effec-

tor’s DNA target, via a one-to-one correspondence of

specific RVDs to specific nucleotides [25��,26��]. For

example, the presence of an ‘HD’ RVD within a repeat

corresponds to recognition of a cytosine, whereas an ‘NG’

or ‘HG’ RVD corresponds to thymine. The modular

nature of this recognition mechanism suggested that it

could be exploited as a ‘code’ to predict TAL effector

DNA binding sites, and to create gene-targeting proteins

using custom arrays of TAL effector repeats.

Recent structural studies of TAL effectors (Figure 2),

published side-by-side in early 2012, provided a clear

view of the structural basis for the DNA recognition

‘code’ described above [27��,28��]. The first structure,

of an artificially engineered TAL effector termed
www.sciencedirect.com
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Crystal structures of dHAX3 and pthXo1 TAL effectors. (a) The structure

of PthXo1 bound to its DNA target site [28��]. The effector contains 22.5

repeat modules each colored separately as shown in Figure 1. The

protein–DNA complex is shown from the side of the DNA duplex (left)

and looking down the axis of the DNA (right). In the left panel, the N-

terminal end of the protein (containing two cryptic repeats that engage

the DNA backbone via a series of basic residues, and that also capture

the strongly conserved thymine at position ‘zero’ of the EBE is at the top

of the complex (see also Figure 3b)). (b) The structure of the artificial

dHax3 TAL effector bound to its corresponding DNA target (left) and in

the absence of bound DNA (right) [27��]. The protein is displayed with the

N-terminal region at the top of both structures. N-terminal cryptic repeat

0, and a truncated portion of repeat �1, is shown as grey ribbon in the

left panel. Because a portion of the N-terminal helix of repeat �1 is

missing in the construct, the full set of contacts extending to ‘thymine

zero’ in the target site are not entirely formed. Superposition of the DNA

bound structures of dHAX3 and PthXo1 yields an overall rmsd for

superimposed backbone atoms of approximately 0.9 Å.
‘dHAX3’, corresponded to a 533 residue construct con-

taining 11 canonical repeats and the half repeat, repre-

senting three of the most common RVDs (HD, NG and

NS). It was solved in the presence and absence of bound

DNA to high resolution (1.85 and 2.4 Å, respectively;

PDB entries 3V6T and 3V6P). The second structure,

of the naturally occurring TAL effector PthXo1 from

Xanthomonas oryzae (PDB entry 3UGM), was solved using

a high-throughput computational structure prediction and

phasing strategy [29�]. Although the PthXo1 structure was
www.sciencedirect.com 
only solved in the presence of bound DNA, and to much

lower resolution (dmin = 3 Å), it contains over 20 repeats

bound to two full turns of DNA and illustrated protein–
DNA contacts for six separate types of RVDs (HD, NG,

HG, NN, NI, and N*) [28��]. The PthXo1 structure also

contains two highly basic ‘cryptic’ repeats located at the

N-terminus that engage the DNA backbone and an

essential 50 thymine residue that immediately precedes

the RVD-specified target nucleotides. Because PthXo1

was crystallized in association with its naturally occurring

target DNA sequence, the complex contained several

examples of RVD-nucleotide mismatches, such as NG

versus cytosine, which provided further insight into the

structural and biochemical determinants of RVD nucleo-

tide specificity.

The structures both demonstrate that each TAL repeat

forms a left-handed, two-helix bundle, in which the two

hypervariable residues in each repeat (at positions 12 and

13) are found at the end of the loop that connects the two

helices (Figure 3a). The individual repeats carry a rela-

tively neutral overall charge and self-associate to form a

right-handed superhelix that wraps around the DNA

major groove along the entire length of the DNA target

site. The DNA in both structures adopts an unperturbed

canonical B-form duplex conformation. The structure of

dHAX3 in the absence of DNA indicates that the effector

displays a more extended, slightly unwound confor-

mation, although the protein still displays a right-handed

superhelical structure with a slightly longer distance

separating individual RVDs [27��]. Modeling the confor-

mation of DNA-free dHAX3 around a DNA duplex

indicates that a significantly more extended effector

conformation might be required for a DNA target search

by the unbound protein. That hypothesis agrees with

published small angle X-ray scattering (SAXS) data on the

full-length PthA TAL effector in the presence and

absence of bound DNA, which indicated at least a two-

fold reduction in the length of the effector upon target

site binding [30].

Recognition mechanism
Both crystal structures also demonstrated that sequence-

specific contacts between the effector and the DNA are

formed solely by the second residue of each RVD (at

position 13 in each repeat) to atoms on the major groove

edge of each base on a single contiguous strand of the

DNA target. In contrast, the first residue in each RVD

(position 12, which is usually occupied by an asparagine or

a histidine) serves a largely structural role, forming a

hydrogen bond between the side chain and the backbone

carbonyl oxygen from position 8 (in the first helix) in each

repeat. Those contacts likely help establish a pre-bound

conformation of the DNA-contacting RVD loop that

ameliorates the substantial entropic cost of binding that

would otherwise accompany the ordering of each TAL

repeat along the entire length of its target.
Current Opinion in Structural Biology 2013, 23:93–99
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Figure 3
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DNA contacts and recognition by TAL effectors. (a) Left: interactions formed between four common RVD types (HD, NG, NN and NI) against their

cognate nucleotide bases from the PthXo1 target site (cytosine, thymine, purine and adenine, respectively). Whereas the first three RVDs form highly

complementary combinations of atomic interactions, NI appears to make desolvating interactions with the neighboring nucleotide and to influence

specificity at least in part through steric exclusion, rather than through highly complementary, sequence-specific hydrogen bonds or van der Waals

contacts. Recent studies of the overall strength of TAL repeat/RVD interactions to cognate bases indicate that NI is associated with considerably

weaker interactions than either HD or NN repeats [33��]. (b) Sequence and structural contacts made by residues immediately N-terminal to the central

(or ‘canonical’) TAL repeats in the PthXo1 structure. This region is highly basic (denoted by blue lysine and arginine residues) as compared to the rest of

the DNA binding region, and displays limited sequence homology to the C-terminal TAL repeats (indicated by rectangles). The structure of PthXo1

bound to DNA (bottom) demonstrates that residues 220–289 form two cryptic repeats (numbered ‘0’ and ‘�1’) that harbor the same left-handed two-

helix bundle as a canonical repeat. These two repeats present a series of basic residues to the DNA backbone (K262, K265 and R266 from the ‘0’

repeat) as well as a single tryptophan residue (W232 from the ‘�1’ repeat) that contacts the ‘thymine zero’ nucleotide (which is strongly conserved in

TAL recognition sites and required for effector activity). The more distal N-terminal region of PthXo1 (and other similar TAL effectors) was not observed

in the crystal structure, but appears to contain sequence elements that could form two additional cryptic repeats (numbered ‘�3’ and ‘�2 and

indicated by light grey and light blue fonts and dashed arrow, to distinguish from the region that has been observed in the crystal structure).

Current Opinion in Structural Biology 2013, 23:93–99 www.sciencedirect.com
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The majority of observed contacts between individual

RVD residues at position 13 and their corresponding

nucleotide bases (Figure 3a) represent interactions that

are optimized via either, first, directional hydrogen-bonds

for recognition of nucleotide bases (such as HD to cyto-

sine or NN to a purine ring); second, highly complemen-

tary packing in the absence of hydrogen bonds (such as

between the backbone alpha carbon of a glycine in NG or

HG and the extracyclic methyl carbon of a thymine base);

or third, interactions that appear to achieve reduced (but

not completely negligible) specificity through steric

exclusion of alternate bases (in particular, the ‘NI’

RVD). A fourth type of interaction is represented by

the ‘N*’ RVD, in which truncation of the RVD loop

and lack of any side chain at position 13 appears to

accommodate any base, presumably with little or no

contribution to overall affinity. A recent study has demon-

strated that the pattern of contacts and specificity

described above can be extended to the recognition of

modified bases: the presence of an NG or HG repeat

(specific for thymine in an unmodified target) can accom-

modate similar interactions with a 5-methylcytosine, thus

making it possible to identify and/or design potential

TAL effectors that can discriminate between target sites

that contain methylated CpG sequences and those that

are unmodified [31�]. Similarly, an even more recent

structural and biochemical study from the same group

has demonstrated that TAL effectors can also bind DNA–
RNA hybrids, doing so by reading out the DNA strand

sequence. Binding of the effector protects such structures

from RNase H degradation, and implies that TAL effec-

tors may be used as research tools (or even protein

therapeutics) in systems where DNA–RNA hybrids are

formed [32�].

A recent recognition study, which examined the function

of a variety of artificial TAL effectors that were engin-

eered to contain long strings of single types of repeats and

RVDs [33��] indicates that that ‘HD’ and ‘NN’ (or ‘HN’)

repeats (which target cytosines and purines, respectively)

make the strongest contribution to overall TAL effector

function in transcriptional activation assays as compared

to the other most common repeat types, whereas effectors

containing strings of ‘NI’ repeats appear to display con-

siderably lower function and reduced specificity. The

same study also examined the relative contributions of

various other RVD types to TAL effector activity and

specificity, and found that an ‘NH’ RVD (which is found

rarely in TAL effectors sequenced to date) demonstrates

a strong preference for guanine in the TAL target site.

Whether these observations reflect DNA binding proper-

ties or other unique requirements for TAL effector

activity, and whether they will translate to the function

of artificial gene targeting proteins that use the TAL

effector repeat scaffold remain to be determined, but

such data are clearly of great benefit and have provided

important design guidelines for researchers in the field.
www.sciencedirect.com 
An open question regarding TAL effector function is the

mechanism by which these highly unusual DNA binding

proteins search for and acquire their cognate targets, and

the possible role of flanking elements. Possible clues can

be found in, first, the relative performance of artificial

TAL constructs containing a variety of N-terminal and C-

terminal truncations, second, an examination of the

sequences immediately N-terminal to the central TAL

repeats, and third, the structure of the PthXo1 TAL

effector bound to DNA. Various studies of gene targeting

proteins constructed using TAL effector scaffolds appear

to indicate that the first 120–150 residues are dispensable

both for effector and nuclease function, and that further

truncations reduce either or both activities [34,35]. The

remaining N-terminal region (corresponding roughly to

residues 120–254) that immediately precedes the begin-

ning of the canonical TAL repeats contains a highly basic

region of the protein, with about 11 conserved arginine

and lysine residues that contribute significantly to the

overall basic charge of the protein. The structure of the

PthXo1 effector bound to its DNA target demonstrated

the presence of at least two ‘cryptic’ repeats (which were

termed the 0 and �1 repeats in that model) that form

multiple non-specific interactions to the region of the

DNA target immediately 50 of the first sequence specific

contact [28] (Figure 3b). This same region of the effector

also engages an invariable thymine base (found at pos-

ition zero of nearly all TAL binding sites) with contacts to

the protein backbone and the indole ring of a single

tryptophan residue that is found in all Xanthomonad
TAL effectors. A more recent structural and biophysical

analysis of an extended N-terminal region of dHax3

(initially identified via limited proteolytic digests)

indicates that as many as four additional cryptic repeats

are formed immediately upstream of the central repeat

region, and that this region provides the bulk of binding

energy required for high affinity target binding and

sequence-specific recognition [36�].

Thus, a reasonable model for a TAL effector DNA target

search would involve a rapid association and dissociation

mechanism that is largely dependent upon the highly

basic N-terminal flanking region, followed by a secondary

‘annealing’ process during each protein–DNA encounter,

in which the central TAL repeats (that individually dis-

play limited affinity to the negatively charged DNA

target) sample the opposing nucleotide base identity

sequentially along the target, wrapping around the

DNA as long as the cognate sequence is appropriately

complementary to each RVD in turn.

Engineering and applications
The biological, bioinformatic and structural studies sum-

marized above have led to an explosion of reports, starting

with the initial description of a chimeric TAL effector

nuclease in 2010 [37��], that demonstrate the successful

creation of a wide variety of gene-targeting reagents using
Current Opinion in Structural Biology 2013, 23:93–99
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the TAL effector scaffold, as well as a variety of efficient

methods for the rapid creation of such reagents that contain

investigator-designed, artificial TAL repeat sequences

(recently reviewed in [38–41]). Gene targeting reagents

using TAL effector scaffolds have included not only TAL

nucleases, but also gene-specific activators and repressors

[42–44]. These advances have allowed gene targeting

reagents created using TAL effector scaffolds to join

and perhaps surpass zinc finger nucleases and homing

endonucleases (or ‘meganucleases’) as commonly

employed tools for a variety of genome editing and correc-

tion applications. While carefully controlled comparative

studies on the performance of each type of reagent on

similar targets, and for similar purposes, represent an out-

standing area for additional future investigation, a number

of recent in cellulo and in vivo studies suggest that TAL

effector-based targeting reagents display robust activity,

specificity and low toxicity in a variety of contexts, in

addition to their ease of engineering [35,45–52].
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